International Journal of el | dexed in: Y CITESCORE
Molecular Sciences KB PubMed & g o

Case Report

Clinical and Molecular Presentation
of a Patient with Paternal
Uniparental Isodisomy of
Chromosome 16

Elizaveta Panchenko, Natalia Semenova, Olga Sereda, Daria Guseva, Zhanna Markova,
Nadezhda Shilova, Olga Simonova, Anton Smirnov, Dmitry Pustoshilov, Arina Khalilova et al.



https://www.mdpi.com/journal/ijms
https://www.scopus.com/sourceid/25879
https://www.ncbi.nlm.nih.gov/pubmed/?term=1422-0067
https://www.mdpi.com/journal/ijms/stats
https://www.mdpi.com
https://doi.org/10.3390/ijms26178521

E‘ International Journal of
“] Molecular Sciences

Case Report

Clinical and Molecular Presentation of a Patient with Paternal
Uniparental Isodisomy of Chromosome 16

Elizaveta Panchenko 1/%*

Nadezhda Shilova (%, Olga Simonova !, Anton Smirnov
Vasilisa Udalova >, Ilya Kanivets 5, Dmitry Zaletaev 17, Vladimir Strelnikov -2

check for

updates
Received: 24 October 2024
Revised: 17 July 2025
Accepted: 28 July 2025
Published: 2 September 2025

Citation: Panchenko, E.; Semenova,
N.; Sereda, O.; Guseva, D.; Markova,
Z.; Shilova, N.; Simonova, O.;
Smirnov, A.; Pustoshilov, D.;
Khalilova, A.; et al. Clinical and
Molecular Presentation of a Patient
with Paternal Uniparental Isodisomy
of Chromosome 16. Int. ]. Mol. Sci.
2025, 26, 8521. https:/ /doi.org/
10.3390/ijms26178521

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Natalia Semenova

10, Olga Sereda 3, Daria Guseva !, Zhanna Markova (9,

L2(D, Dmitry Pustoshilov %, Arina Khalilova °,

and Sergey Kutsev !

Research Centre for Medical Genetics, 115522 Moscow, Russia; semenova@med-gen.ru (N.S.);
anton.smirnov.9910@gmail.com (A.S.); vstrel@list.ru (V.S.)

Department of General and Medical Genetics, Pirogov Russian National Research Medical University,
117513 Moscow, Russia

Yaroslavl Regional Perinatal Center, 150042 Yaroslavl, Russia

Biotech Campus Limited Liability Company, 117437 Moscow, Russia; dpustoshilov@biotc.ru
Genomed Medical Center, 115419 Moscow, Russia

*  Correspondence: pangen1994@gmail.com

(S I NN

Abstract

Uniparental disomies (UPDs) are among the causes of imprinting disorders. Specific
phenotypes of most causative UPDs have been described. Here, we describe the case
of a 2-year-old female patient who presented a syndromic phenotype. Chromosomal
microarray analysis revealed UPD of the whole chromosome 16. Microsatellite analy-
sis demonstrated paternal origin of the UPD and its isodisomic pattern (UPiD (16) pat).
Mosaic trisomy 16 was not detected using the FISH method. Whole-exome sequencing
revealed no pathogenetic genetic variants sufficient to explain the syndromic phenotype
nor unmasked pathogenic recessive genetic variants on chromosome 16. Whole-genome
trio DNA sequencing revealed no additional candidate pathogenic genetic variants to
those detected by whole-exome sequencing, including miRNAs and IncRNAs. Imprint-
ing disorders at 6q24.2, 7p12.2, 7q32.2, 11p15.5, 14q32.2, 15q11.2, and 20q13.32, as well
as multilocus imprinting disturbances (MLIDs), were excluded by Methylation-Specific
Multiplex Ligation-Dependent Probe Amplification (MS-MLPA). At the same time, we
detected abnormal hypermethylation of the ZNF597 transcription start site differentially
methylated region (ZNF597:TSS-DMR), accompanied by hypomethylation of the neigh-
bouring ZNF597:3' DMR. Both DMRs were normally imprinted, and the DNA alterations
in our patient with UPD (16) pat are opposite to those previously described for maternal
uniparental disomy (UPD (16) mat). To date, several cases of UPD (16) pat have been
reported. Our case report describes the syndromic phenotype of a patient with paternal
uniparental disomy of chromosome 16 in contrast to the previously described patients with
a normal phenotype or with abnormal phenotypes caused by acquired homozygosity of
pathogenic variants at autosomal recessive genes located on this chromosome. Reporting
such observations will help systematize data on the phenotypes of imprinting disorders on
chromosome 16.

Keywords: imprinting disorders; uniparental disomy; chromosome 16; microsatellite
analysis; chromosomal microarray analysis; FISH; whole-exome sequencing; MS-MLPA;
nanopore sequencing
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1. Introduction

Genomic imprinting is implemented via monoallelic DNA methylation, anomalies of
which in imprinted regions of chromosomes, depending on parental origin, lead to differ-
ent phenotypes of diseases. Syndromic disorders caused by disturbed human imprinting
are associated with chromosome 6 (transient neonatal diabetes mellitus type 1 (OMIM#
601410); chromosome 7 (Silver—Russell syndrome type 2 (OMIM# 618905)); chromosome
8 (Birk-Barel syndrome (OMIM# 612292)); chromosome 11 (Beckwith-Wiedemann syn-
drome (OMIM# 130650) and Silver—Russell syndrome type 1 (OMIM# 180860) and type 3
(OMIM# 616489)); chromosome 14 (Temple syndrome (OMIM# 616222) and Kagami—-Ogata
syndrome (OMIM# 608149)); chromosome 15 (Prader-Willi syndrome (OMIM# 176270),
Angelman syndrome (OMIM# 105830), Schaaf-Yang syndrome (OMIM# 615547), and
central precocious puberty 2 (OMIM# 615346)); chromosome 16; chromosome 20 (pseu-
dohypoparathyroidism type 1A (OMIM#103580), type B (OMIM# 603233), and type C
(OMIM# 612462), pseudopseudohypoparathyroidism (OMIM# 612463), osseous hetero-
plasia, progressive (OMIM# 166350), and Mulchandani-Bhoj-Conlin syndrome (OMIM#
617352)) [1]. Uniparental disomies (UPDs) are among the causes of imprinting disorders [2].
The first clinical case of a UPD, diagnosed by an analysis of polymorphic DNA markers
using Southern blotting, was reported in 1988 and described a girl with cystic fibrosis, short
stature, and UPD (7) mat [3]. At present, most cases of loss of heterozygosity (LOH), which
can be a consequence of UPD, are detected in chromosomal microarray analyses [4].

Specific phenotypes of most pathogenic UPDs have been described, which manifest
depending on the parental origin of the methylation anomaly. The first case report of a
patient with paternal uniparental disomy of chromosome 16 with a phenotype of bilateral
pes calcaneus, an additional rudimentary mandibular dental arch, and normal physical and
psychomotor development was published at 2000 [5]. Later, in 2021, a patient with paternal
uniparental isodisomy and heterodisomy of chromosome 16 had a normal phenotype [6].
A specific syndromic phenotype has not been described for patients with LOH of some
imprinted regions of the genome, in particular, for UPD (16) pat, in addition to those that
can be explained by mutations of autosomal recessive genes like GPT2 [7], FA2H [8,9],
ABCA3 [10], FANCA [11], SPG35 [12], PMM2 [13], ALG1 [14], GAN [15], and WIWOX [16]
within the UPD.

Locus 16p13.3 is the most well-studied imprinted locus on chromosome 16. The pater-
nally imprinted somatic differentially methylated region (sDMR), ZNF597:TSS-DMR, was
identified in the shared promoter region of the ZNF597 and NAA60 genes, which regulates
the expression of both genes. The neighbouring ZNF597:3' DMR is a maternally imprinted
germinal differentially methylated region (gDMR) functioning as an upstream regulator
of the ZNF597 transcription start site DMR (ZNF597:TSS-DMR). The biological functions
of ZNF597 and NAA60 remain to be clarified [17,18]. Here, we demonstrate the case of a
2-year-old female patient with UPiD (16) pat who presented a syndromic phenotype.

2. Results
2.1. Clinical Presentation

The proband was an affected 2-year-old female born to non-consanguineous Russian
parents. The pregnancy was complicated by anemia and pre-eclampsia. The prenatal
period was complicated by fetal growth restriction at the 30th week of pregnancy. The
girl was born by cesarean section (C-Section) at 37-38 gestational weeks (GWs). The
birth weight was 1800 g (Z-score —3.7 SDS (standard deviation score)), the birth length
was 45 cm (Z-score —2.2 SDS), and the Apgar score was 8/8. Body weight deficiency
syndrome after birth was the reason for hospitalization to the neonatal intensive care unit
for 27 days. The child was examined at the Research Centre for Medical Genetics. At



Int. J. Mol. Sci. 2025, 26, 8521

30f17

8 months of age, the patient’s weight was 6.15 kg (Z-score —2.33 SDS), and her length
was 65 cm (Z-score —1.92 SDS). At 11 months of age, the patient’s weight was 6.5 kg (Z-
score —2.61 SDS), and her length was 70 cm (Z-score —1.39 SDS). The phenotype included
plagiocephaly, hypotelorism, arched eyebrows, snub nose, and proximal displacement
of the thumbs. Instrumental investigations revealed an atrial septal defect, pulmonary
valve stenosis, pelvic dystopia and rotation of the left kidney, assimilation of the atlas,
spina bifida posterior C1, and hypoplasia of the axial atlas. At 2 years of age, the patient’s
weight was 10.5 kg (Z-score —0.73 SDS), and her length was 84 cm (Z-score —0.74 SDS).
During dynamic observation, the girl’s physical development indicators lagged behind age
norms. Her phenotype included microcephaly, high anterior hairline, arched eyebrows,
hypotelorism, epicanthus, almond-shaped palpebral fissures, wide nasal bridge, depressed
nasal ridge, wide base of the nose with a broad tip, smoothed filter, full cheeks, downturned
corners of the mouth, short chin, dysplastic ears, narrow funnel-shaped chest, cone-shaped
fingers of the hands, proximal displacement of thumbs, hyperlordosis, valgus knees and
feet, and rocker-bottom foot (Figure 1). Her speech and motor development were delayed.
The Face2Gene v.6.2.6 service, accessed on 10 May 2024 [19], offered several diagnostic
hypotheses, including Williams-Beuren syndrome (OMIM# 194050), Angelman syndrome
(OMIM# 105830), and Prader-Willi syndrome (OMIM# 176270). Given the syndromic
nature of the disease, the future management plan includes supervision by a pediatrician,
neurologist, cardiologist, orthopedist, and geneticist.

(b) (c)

Figure 1. Patient’s phenotype included (a) microcephaly, high anterior hairline, arched eyebrows,

hypotelorism, epicanthus, almond-shaped palpebral fissures, wide nasal bridge, depressed nasal
ridge, wide base of the nose with a broad tip, smoothed filter, full cheeks, downturned corners of the
mouth, short chin, dysplastic ears, narrow funnel-shaped chest, (b) cone-shaped fingers of the hands,
proximal displacement of thumbs, (c) hyperlordosis, valgus knees and feet, and rocker-bottom foot.

2.2. Molecular Genetic Findings
2.2.1. Loss of Heterozygosity on Chromosome 16
Chromosomal microarray analysis revealed a loss of heterozygosity (LOH) on chro-

mosome 16. The molecular karyotype of the proband (according to ISCN 2016 [20]) was arr
[GRCh37] 16p13.3q24.3 (89561_90163275) x 2 hmz (Figure 2).
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Figure 2. Chromosomal microarray analysis results showing a loss of heterozygosity (LOH) on
chromosome 16 of the proband. LOH areas are presented as purple rectangles along the short and
long arms of chromosome 16. The figure was generated using Chromosome Analysis Suite software

version 4.0.
2.2.2. The Loss of Heterozygosity on Chromosome 16 Is Due to Paternal
Uniparental Disomy

Microsatellite analysis revealed that the patient had inherited both copies of chromo-
some 16 from her father in an isodisomic manner (Figures 3-5).

Sample File Sample Name Panel sal oS sQ |
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Figure 3. The result of microsatellite analysis using the D16S513 marker. (Top panel), maternal
(MAT); (middle panel), paternal (PAT); (bottom panel), and proband (PR) DNA samples. X-axis, size
of the microsatellite PCR product, bases. Y-axis, relative fluorescence units. The figure was generated
using GeneMapper 6 software.
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Figure 4. The result of microsatellite analysis using the D16S3069 marker. (Top panel), maternal
(MAT); (middle panel), paternal (PAT); and (bottom panel), proband (PR) DNA samples. X-axis, size
of the microsatellite PCR product, bases. Y-axis, relative fluorescence units. The figure was generated
using GeneMapper 6 software.
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Figure 5. The result of microsatellite analysis using the D16S3395 marker. (Top panel), maternal
(mat); (middle panel), paternal (pat); and (bottom panel), proband (pr) DNA samples. X-axis, size of
the microsatellite PCR product, bases. Y-axis, relative fluorescence units. The figure was generated
using GeneMapper 6 software.

2.2.3. Low-Level Trisomy 16 Mosaicism Was Excluded by FISH

No cases of trisomy 16 were detected using FISH with a chromosome 16 centromere-
specific DNA probe among at least three hundred interphase nuclei and metaphase spreads
from cells cultured from peripheral blood and skin fibroblasts (Figure 6).
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(a) (b)

Figure 6. FISH results obtained with the D16Z1 DNA probe in cultured lymphocytes (a) and skin
fibroblasts. (b) All cells demonstrate two hybridization signals corresponding to the two copies of
chromosome 16. Image panels are at 1000 x magnification.

2.2.4. Absence of Detected Unmasked Pathogenic Recessive Genetic Variants on
Chromosome 16

Whole-exome sequencing was performed to search for the causative genetic vari-
ants throughout the exome and homozygous autosomal recessive genes defects, espe-
cially on chromosome 16. Three pathogenic variants were detected on autosomes other
than chromosome 16, COG2 (chrl) gene heterozygous frameshift variant NM_007357:
¢.1034_1038delCCATA (p.Thr345fs), P3H2 (chr3) gene heterozygous splice variant NM_0181
92:¢.2034+1G>A, and CNGB3 (chr8) gene heterozygous frameshift variant NM_019098:c.819
_826del CAGACTCC(p.Arg274fs). No unmasked pathogenic recessive genetic variants on
chromosome 16 were detected.

Whole-genome trio DNA sequencing revealed no candidate pathogenic genetic
variants other than those detected using whole-exome sequencing, including miRNAs
and IncRNAs.

2.2.5. Imprinting Disorders and Multilocus Imprinting Disturbances Were Excluded by
Methylation-Specific Multiplex Ligation-Dependent Probe Amplification

MS-MLPA targeting the 6q24.2, 7p12.2, 7q32.2, 11p15.5, 14q32.2, 15q11.2, 19q13.43,
and 20q13.32 imprinted regions revealed no copy number or methylation abnormalities
(Figure 7), thus excluding well-known imprinting disorder syndromes and multilocus
imprinting disorders. We subsequently performed trio nanopore sequencing to assess the
DNA methylation status of imprinted loci on chromosome 16.

2.2.6. Imprinting Disorder on Chromosome 16 Revealed by Oxford Nanopore Sequencing

Oxford nanopore sequencing can detect DNA methylation from the ionic current signal
of single molecules, offering a unique advantage over conventional methods [21]. We took
advantage of this opportunity and performed nanopore sequencing of the proband’s and
her parents” DNA samples to characterize the methylation status of the known imprinted
locus on chromosome 16. It was previously demonstrated that 16p13.3 encompasses the
imprinted ZNF597 gene [17]. In this case, we witnessed abnormal hypermethylation of the
ZNF597:TSS-DMR, accompanied by hypomethylation of the neighboring ZNF597:3' DMR
(Figure 8).
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Figure 7. Results of the Methylation-Specific Multiplex Ligation-Dependent Probe Amplification
analysis. “KEI-1”"—test sample; “518”, “523”, and “525”—reference samples; “r—“—copy abnor-
mality detected; “r+”—methylation abnormality detected. No copy abnormalities were detected,
and the copy number status of the 6q24.2, 7p12.2, 7q32.2, 11p15.5, 14q32.2, 15q11.2, 19q13.43, and
20q13.32 imprinted regions was within 0.80-1.20. No methylation abnormalities were detected, and
the methylation status of the 6q24.2, 7p12.2, 7q32.2, 11p15.5, 14q32.2, 15q11.2, 19q13.43, and 20q13.32
imprinted regions was within 0.40-0.65 (around 50% methylated, imprinted). The figure was gener-
ated using Coffalyser.Net™ software (v.250317.1029). FRSS, the Fragment Run Separation Score, is a
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Figure 8. Imprinting disruption at two DMRs of the ZNF597 gene in the proband. The Y-axis includes
the upper track, showing a schematic of the ZNF597 gene; the 5’ CpG island is colored green in the
second track; and the lower track shows hypermethylation of the ZNF597:TSS-DMR (red points) and
hypomethylation of the ZNF597:3' DMR (green points), relative to the parents’ DNA methylation
(black points). X-axis, the coordinates of the region under study on chromosome 16, bases. Y-axis,
level of DNA methylation along the ZNF597 gene. The result was obtained, and the figure was
generated using R v.4.4.2.
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3. Discussion

Trisomy 16 is one of the most common autosomal trisomies in humans [22]. Most cases
of UPD (16) are consequences of trisomy rescue and are heterodisomic (UPhD). UPD (16) is
known to be associated with trisomy 16 mosaicism, which might influence the phenotype
of UPD (16) carriers. Another pathomechanism of UPD (16) is monosomy 16 rescue,
where most cases are isodisomic (UPiD). Schematic representations of mechanisms and
detectable genomic features for each UPD subtype can be found in previously published
papers [23-25].

As a consequence of UPiD, homologous loci mapping to chromosome 16 are identical,
and associated phenotypes may be due to unmasked mutations in recessive disease-related
genes like GPT2 [7], FA2H [8,9], ABCA3 [10], FANCA [11], SPG35 [12], PMM2 [13], ALG1 [14],
GAN [15], and WWOX [16].

Due to the absence of causal pathogenic variants in the genes related to autosomal
recessive diseases located on chromosome 16 and abnormal karyotype in our patient, we
used case reports of patients with UPD (16) mat, excluding patients with either an effect of
mutations of autosomal recessive genes or with an abnormal (including tissue mosaicism)
postnatal karyotype, for a comparison of the UPD (16) mat and UPD (16) pat phenotypes.
We also excluded UPD (16) mat patients with only prenatal ultrasound markers available
without a postnatal / postmortem examination of the clinical presentation because, in these
cases, information about the clinical outcome may be incomplete. The comparison of
UPD (16) mat (excluding patients with either an effect of mutations of autosomal recessive
genes or with only prenatal ultrasound markers available without a postnatal/postmortem
examination of the clinical presentation, or with abnormal karyotype) [https://cs-tl.de/
DB/CA/UPD/16-UPDm.html [26] (accessed on 30 June 2025); patients with UPD (16) pat;
and our patient are presented in Table 1.

Table 1. The comparison of UPD (16) mat, UPD (16) pat, and our patient’s phenotypes. N—number
of patients. N/S—not studied in patients. Numbers in brackets refer to bibliographic references. The
“+” sign indicates the presence of a symptom in the patient. The sign indicates the absence of a
symptom in the patient. * Fifteen patients (N =1 [27] + N=2[28] + N=1[29] + N=1[30]+ N =1
[31]1+N=1[32] +N=1[33] + N=1[34] + N=2[35] + N=1[36] + N = 1 [37] + N = 2 [38]). ** Two

patients (N =1 [5] + N =1 [6]).

u__

Patients
Features UPD (16) Mat UPD (16) Pat UPD (16) Pat
15 Patients * 2 Patients ** (Our Patient)
Prenatal
short femora 1/15 — —
abnormal echogenicity of the fetal left lower lung
. — 1/2 —
(possible isolated lung)
slight polyhydramnios — 1/2 —
reverse flow in the ductus venosus 1/15 — —
abnormal results of the maternal serum screen 3/15 1/2 —
abnormal results for the chromosome 16 number in N/S 1/2 N/S
maternal NIPT
chorionic villus sampllng (CVS) karyotyping: trisomy 16 7/15 B N/S
in all analyzed cells
amniotic fluid (AF) karyotyping: trisomy 16 mosaicism 3/15 1/2 N/S

placental mosaicism (CPM) for trisomy 16 — 1/2 N/S
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Table 1. Cont.

Patients
Features UPD (16) Mat UPD (16) Pat UPD (16) Pat
15 Patients * 2 Patients ** (Our Patient)
amniotic fluid (AF) CMA: chromosome 16 LOH N/S 1/2 N/S
maternal anemia — — +
pre-eclampsia 2/15 - +
maternal hematuria 1/15 — —
maternal hepato-renal disfunction 1/15 — —
two-vessel placenta 1/15 - —
Infancy and childhood
general
PBL karyotyping: no trisomy 16 morszilicism or other 15/15 2/2 +
chromosomal abnormalities
premature birth 8/15 1/2 +
intrauterine growth restriction 11/15 1/2 +
postnatal growth failure 9/15 1/2 +
feeding difficulties 6/15 - -
muscular hypotonia 1/15 - -
abnormalities of the facial phenotype
protruding forehead 6/15 — —
relative macrocephaly 4/15 — -
microcephaly 1/15 - +
triangular face 4/15 — —
high anterior hairline - - +
arched eyebrows — — +
hypotelorism — — +
epicanthus 1/15 — +
almond-shaped palpebral fissures 1/15 — +
slightly flatter face profile 1/15 - -
wide nasal bridge — — +
depressed nasal ridge — — +
wide base of the nose with a broad tip - - +
smoothed filter - — +
full cheeks - - +
downturned corners of the mouth - - +
short chin — - +
dysplastic ears 1/15 — +
abnormalities of the cardiovascular system
atrial septal defect 1/15 — +
atrioventricular defect 4/15 - —

ventricular septal defect (VSD) 2/15 — -
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Table 1. Cont.

Patients

Features UPD (16) Mat UPD (16) Pat UPD (16) Pat

15 Patients * 2 Patients ** (Our Patient)
hypertrophied, dilated right Ventr.icle suggesting 1/15 B _

pulmonary hypertension
aortic stenosis 1/15 - —
pulmonary valve stenosis 1/15 - —
aortarctia 1/15 — —
congenital heart disease 1/15 — —
abnormalities of the musculoskeletal system
scoliosis 2/15 — —
body asymmetry 1/15 - -
dislocation of the radio-humeral articulation 2/15 - —
clinodactyly of the fifth fingers 7/15 — —
assimilation of the atlas — — +
spina bifida posterior C1 — — +
hypoplasia of the axial atlas - - +
bilateral pes calcaneus — 1/2 —
an additional rudimentary mandibular dental arch — 1/2 —
narrow funnel-shaped chest — — +
cone-shaped fingers of the hands — — +
proximal displacement of thumbs — - +
hyperlordosis - - +
valgus installation of knees and feet - — +
rocker-bottom foot — — +
right talipes equinovarus 1/15 — —
abnormalities of the genitourinary system

hypospadias 3/15 - —
pelvic dystopia - - +
rotation of the left kidney — — +
left hydronephrosis 1/15 — —
left multi-cystic kidney 1/15 — -
genitourinary anomalies 1/15 - —
left renal agenesis 1/15 - —

abnormalities of the digestive system

esophageal atresia 1/15 — —
tracheoesophageal fistula 1/15 — —
giant cell hepatitis 1/15 - -
inguinal hernia 1/15 — —
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Table 1. Cont.
Patients
Features UPD (16) Mat UPD (16) Pat UPD (16) Pat
15 Patients * 2 Patients ** (Our Patient)
abnormalities of the respiratory system
pulmonary cystic changes 2/15 — —
rudimentary bronchus on the right side 2/15 - —
abnormalities of the nervous system

delayed speech development 3/15 — +
delayed motor development 1/15 - +

In 2019, Nakka et al. [23] provided an estimation of the prevalence of UPD in four
million individuals from the general population and confirmed that UPD (16) is the most
common UPD, with an overwhelming prevalence of UPD (16) mat. Among them, at least
one-third are partial disomies not encompassing a known imprinted region at 16p13.3.
In their study, the authors detected significant associations of UPD (16) pat with type 2
diabetes, hyperglycemia, and high cholesterol levels. It should be noted that the phenotypic
features were ascertained from self-reported survey answers of 23andMe clients. The
content of this survey, together with self-reporting, do not allow us to view the results
as reliable and profound medical information. In particular, the survey lacks features
descriptive for our patient with UPD (16) pat, such as intrauterine growth restriction, motor
delay, microcephaly, high hairline, and arched eyebrows. Note that the authors clearly
indicate the limitations of the 23andMe phenotypic data and of the conclusions drawn.

Patients with UPD (16) mat more often, but not always, have a Silver-Russel syndrome-
like (SRS-like) phenotype [28,34,35,39], as opposed to UPD (16) pat, where patients have
signs of general dysmorphogenesis, which is difficult to structure into a clear syndromic
description due to the small number of observations and the prevalence of the normal
phenotype [6,40]. In our patient, features such as preeclampsia and intrauterine growth
restriction, combined with low physical development in the postnatal period, which are
described as accompanying diseases of genomic imprinting at different stages of ontoge-
nesis with the absence of causal variants in whole-exome sequencing data, allow us to
assume that the patient’s phenotype is due to effects on the expression of imprinted genes
located on chromosome 16 [41]. Since this patient with UPD (16) pat presents phenotypic
manifestations different from UPD (16) mat, a different phenotypic effect of the expression
of imprinted genes located on chromosome 16 can be assumed, depending on the parental
origin. In our patient with UPD(16) pat, we observed DNA methylation abnormalities of
the ZNF597 gene DMRs that are consistent with the absence of a maternally derived copy of
chromosome 16 in the proband. These changes are opposite to those previously described
in UPD (16) mat [28], confirming that the imprinting anomalies in this region are due to
UPDs of different parental origins. Moreover, at least one case has already been described
of an isolated hypomethylation of the ZNF597:TSS-DMR and subsequent loss of imprinting
in a patient with prenatal growth retardation and dysmorphic features, for whom UPD (16)
was excluded [17], thus making it a candidate imprinting disorder syndrome. Evidence of
imprinting at 16p13.3 recently provided a rationale for including analysis of copy number
variations (CNVs) and methylation anomalies of ZNF597 in the SALSA MLPA Probemix
ME034-D1 Multi-Locus Imprinting Test [18]. The search for additional imprinted genes on
chromosome 16 to explain the phenotype of alveolar capillary dysplasia with misalignment
of pulmonary veins (ACDMPV) (OMIM# 265380), with deletions almost exclusively on the
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maternally inherited chromosome 16, showed evidence for novel candidate-imprinted loci
on chromosome 16, namely, the maternally methylated DMR of PRR25, which is thought to
be paternally expressed in supporting lymphoblastoid cells, and the paternally methylated
DMR on 16q24.1 adjacent to LINC01082 mapping to the FOXF1 enhancer [40].

Future observations of patients with UPD (16) pat will enable better differenti-
ation of UPD (16) pat and UPD (16) mat phenotypes and highlight molecular ge-
netic/epigenetic mechanisms.

4. Materials and Methods
4.1. Consent and Approval

All research participants gave their informed consent to clinical examination and the
publication of their details and images (for the infant proband, the responsible adult signed
a consent form). This study was performed in accordance with the Declaration of Helsinki
and approved by the local ethics committee of the Research Center for Medical Genetics
(approval number 2021-4/2).

4.2. Clinical Assessment

The family of the affected female were clinically examined at the Research Centre for
Medical Genetics, Moscow, Russia.

4.3. Molecular Genetic Testing

Blood samples were collected from the proband and her unaffected parents, and
genomic DNA was extracted using the phenol-chloroform procedure [42].

4.3.1. Chromosomal Microarray Analysis

The CytoScan HD array (Affymetrix Inc., Santa Clara, CA, USA) was applied to detect
CNVs across the entire genome according to the manufacturer’s protocols. Microarray-
based copy number analysis was performed using Chromosome Analysis Suite software
version 4.0 (Thermo Fisher Scientific Inc., Waltham, MA, USA), and the results were pre-
sented according to the International System for Human Cytogenomic Nomenclature 2016
(ISCN, 2016 [20]), https:/ /karger.com/books/book/3554 /ISCN-2016 An-International-
System-for-Human, accessed on 23 May 2025. All detected CNVs were assessed by compar-
ing them with the published literature and the public databases, the Database of Genomic
Variants (DGV), released 25 February 2020 (http://dgv.tcag.ca/dgv/app/home (accessed
on 28 June 2022)), DECIPHER v11.31 (http://decipher.sanger.ac.uk/ (accessed on 28 June
2022)) and OMIM, updated 22 May 2025 (http:/ /www.ncbi.nlm.nih.gov/omim (accessed
on 28 June 2022)). Genomic positions refer to the human genome February 2009 assembly
(GRCh37/hg19).

4.3.2. Microsatellite Analysis

Seven microsatellite markers located along chromosome 16 (D1653144, D165403,
D16S513, D1652636, D1653069, D1653395, and D1653399) were selected for microsatellite
analysis to characterize the parental origin of the disomy and to investigate whether
the UPD was UPiD or UPhD. Fragment analysis of the FAM-labeled PCR products was
performed on an Applied Biosystems 3500 genetic analyzer (ThermoFisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions.

4.3.3. Fluorescence In Situ Hybridization

FISH was performed on interphase nuclei and metaphase spreads from cells cultured
from peripheral blood and skin fibroblasts, at least 300 each, according to the manufacturers’
protocols. DNA probes for the centromere region of chromosome 16 (SE 16 (D16Z2), Leica
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Biosystems, Amsterdam, The Netherlands) were applied. The analysis was performed
using an Axiolmager M1 epifluorescence microscope (Zeiss, Oberkochen, Germany) and an
Isis digital image processing computer program (MetaSystems, Altlussheim, Germany) [43].

4.3.4. Exome Sequencing

The patient’s DNA was analyzed using next-generation sequencing of 2 x 151 bp
paired-end reads. The DNA library was enriched using a selective capture method targeting
the protein-coding regions of human genes. The mean depth of coverage was 119x for
this sample.

4.3.5. Oxford Nanopore Sequencing

Whole genomic DNA was sequenced on an Oxford Nanopore PromethION instru-
ment (Oxford Nanopore technology, Oxford, UK) equipped with R10.4.1 (Kit 14, Q20+)
flow cells [44]. Signals in POD5 format were base-called with Dorado v0.9.1 using the
dna_r10.4.1_e8.2_400bps_hac@v5.0.0 model and --min-gscore 15; the integrated 5mCG_5hmCG
v3 neural network simultaneously tagged 5-methyl- and 5-hydroxy-methyl-cytosines in
CpG islands [45]. Reads were aligned to GRCh38 by the Dorado-embedded minimap2 en-
gine using -Y--secondary = yes [46]. The resulting BAMs were coordinate-sorted with
SAMtools v1.16.1 [47], and duplicate reads were flagged with MarkDuplicates from
GATK v4.3.0.0 [48]. Germline SNVs and short indels were identified with Clair3 v1.0.11
(model r1041_e82_400bps_hac_v500) [49]. Haplotypes were reconstructed with WhatsHap
v2.6, leveraging long-read phasing information [50]. Modified-base tags were converted
from modBAM to bedMethyl and summarized with modkit v0.9.1 in pileup mode using
the recommended parameters, --filter-threshold C:0.75--filter-threshold A:0.85--interval-size
15,000,000--combine-strands--ignore h—cpg, for downstream epigenetic analyses [51].

Further analysis and visualization were performed using R v.4.4.2 [52] with the vroom
v.1.6.5 [53], dplyr v.1.0.0 [54], Gviz v.1.30.3 [55], and GenomicRanges v.1.38.0 packages [56].
The mean methylation levels of the parents’ DNA were used as the reference. The difference
between the reference and proband was calculated using the formula

delta; = proband; — reference;

where delta; is the difference between methylation levels in the reference and proband at
the i-th locus. The ZNF597 gene region is shown in Figure 8. We assumed deltas in the
range [—0.2, 0.2] to be non-significant. These thresholds were chosen based on the average
depth of sequencing of our samples and on other published works [57].

4.3.6. Methylation-Specific Multiplex Ligation-Dependent Probe Amplification

MS-MLPA was performed using SALSA MLPA Probemix ME034-C1 Multi-locus
Imprinting (lot: C1-0121, MRC-Holland, Amsterdam, The Netherlands), which analyzed
the 6q24.2, 7p12.2, 7q32.2, 11p15.5, 14q32.2, 15q11.2, 19q13.43, and 20q13.32 imprinted
regions. MS-MLPA was performed according to the manufacturer’s instructions. The
results were analyzed using Coffalyser.Net™ software (v.250317.1029) developed and
supported by MRC Holland.

5. Conclusions

We present a description of a 2-year-old female patient with a syndromic phenotype
and UPiD (16) pat. This case report highlights the phenotype associated with the LOH
of an insufficiently characterized imprinted region of the human genome. The accumu-
lation of such observations will contribute to the systematization of data on the possible
manifestations of imprinting disorders on chromosome 16. If methylation abnormalities
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are identified, the use of tools such as nanopore trio sequencing will help characterize
understudied imprinted chromosomal regions such as 16p13.3.
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