

Contents lists available at ScienceDirect

Stem Cell Research

of a treatment including pharmacological investigations and genome

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Single Cell Line

Generation of induced pluripotent stem cell line (RCMGi012-A) from fibroblasts of patient with mucopolysaccharidosis type VI

Ekaterina Kondrateva^{*}, Olga Grigorieva, Irina Panchuk, Igor Bychkov, Ekaterina Zakharova, Vyacheslav Tabakov, Victoria Pozhitnova, Ekaterina Voronina, Olga Shchagina, Alexander Lavrov, Svetlana Smirnikhina, Sergey Kutsev

Research Centre for Medical Genetics, Moscow 115522, Russian Federation

ABSTRACT

Skin fibroblasts obtained from a 5-year-old girl with genetically proven (two heterozygous mutations in *ARSB* gene) and clinically manifested mucopolysaccharidosis type VI were successfully transformed into induced pluripotent stem cells by using Sendai virus-based reprogramming vectors including the four Yamanaka factors namely SOX2, OCT3/4, KLF4, and c-MYC. These iPSCs expressed pluripotency markers, had a normal karyotype and the potential to differentiate into three germ layers in spontaneous differentiation assay. The line may be used for cell differentiation and pharmacological investigations, and also may provide a model for development of a personalized treatment including drug screening and genome editing.

Resource table

			NM_000046.5:c.966G>A	
Unique stem cell line identifier	RCMGi012-A		NC_000005.9: g.78241273_78248429delins77831940_77883742inv	
Alternative name(s) of stem cell line	P11L3		NC_000005.9:g.77831892_77883763delins [78248357_78248437inv;	
Institution	Research Centre for Medical Genetics, Moscow, Russia		TAGCCTGGGAACATA]	
Contact information of distributor	MD Ekaterina Kondrateva,	Date archived/stock date	December 2022	
Type of cell line	iPSC	Cell line repository/ bank	https://hpscreg.eu/cell-line/RCMGi012-A	
Origin	human	Ethical approval	The study was approved by the local ethics committee of	
Additional origin info	Age: 5 Sex: female		the Federal State Budgetary Institution "Research Centre	
	Ethnicity: Caucasian		for Medical Genetics" (the approval number 2015–5/3)	
Cell Source	Skin fibroblasts			
Clonality	Clonal			
Method of	Sendai virus (OCT3/4, SOX2, KLF4, and c-MYC)			
reprogramming	Senual VII us (0C13/4, S0A2, RLF4, and C-WIC)			
Genetic Modification	Yes			
Type of Modification	Hereditary			
Evidence of the	RT-PCR			
reprogramming transgene loss (including genomic		1. Resource utility	, ent stem cells (iPSCs) line was derived from donor	
copy if applicable)		1 1		
Associated disease	Mucopolysaccharidosis type VI	with mucopolysaccharidosis type VI who is heterozygous for two mu-		
Gene/locus	Gene: ARSB	L L L L L L L L L L L L L L L L L L L	gene. These iPSCs may be subsequently used for cell	
	Locus: 5q14.1	differentiation, organ	noid formation and disease modelling, development	

* Corresponding author.

E-mail address: ekaterina.kondratyeva@gmail.com (E. Kondrateva).

Mutation:

https://doi.org/10.1016/j.scr.2023.103259

Received 18 September 2023; Received in revised form 8 November 2023; Accepted 20 November 2023 Available online 22 November 2023 1873-5061/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).

editing.

(continued on next column)

2. Resource details

Maroteaux–Lamy syndrome (mucopolysaccharidosis type VI, MPS-VI) is a rare genetic autosomal recessive disease from the group of lysosomal storage disorders. MPS-VI is caused by a deficiency of the lysosomal enzyme aryl-sulfatase B (ASB), encoded by the *ARSB* gene (NM_000046.5). ASB is involved in a degradation of glycosaminoglycans (GAGs) dermatan sulfate and chondroitin-4-sulfate. Accumulation of these GAGs in the cells' lysosomes and extracellular matrix leads to the progressive damage to cells and tissues with subsequent development of the multisystemic disorder. Clinical phenotypes of patients with MPS VI represent a continuum, ranging from severe early-onset forms with rapid progression of osteo-articular signs, to later-onset slowly progressing forms, which are often noted only by the presence of coarsened facial features (Harmatz and Shediac, 2017).

Here, we established an iPSC line derived from a 5-year-old girl with clinically manifested (severe growth retardation, kyphoscoliosis and hand contracture) MPS-VI. Sanger sequencing of the patient's *ARSB* gene identified heterozygous pathogenic nonsense variant c.966G>A (p. Trp322*) in the exon 5. WGS with subsequent RNA analysis determined new pathogenic variant which arose from a non-allelic homologous recombination between *ARSB* and the neighboring *LHFPL2* gene causing premature transcription termination (Bychkov et al., 2022) (Table 1).

Fibroblasts were transformed into iPSCs by using Sendai virus-based reprogramming vectors expressing the four Yamanaka factors, OCT3/4, SOX2, KLF4, and c-MYC, with 5:5:4 MOI ratio for KOS, c-Myc and Klf4 viruses, respectively. iPSC clone named RCMGi0012-A was purified (Fig. 1A). At passage 8 the expression of pluripotency markers SSEA4, OCT4, SOX2, and NANOG was detected and counted by immunocytochemistry assay (Fig. 1B, 1C). Sanger sequencing confirmed the presence of the c.966G>A mutation in heterozygous state and the presence of specific product of second mutation in fibroblasts and iPSC line (Fig. 1D). Potential of iPSCs to differentiate into three germ layers was proven in spontaneous differentiation assay by formation of embryoid bodies (EB) and analyzing them by immunocytochemistry staining which was positive for FOXA2 (endodermal marker), tubulin beta (ectodermal marker), and vimentin (mesodermal marker) (Fig. 1F). iPSCs karyotype was inspected by in-house Giemsa-banding of at least 15 metaphase spreads based on ISCN 2016. At passage 15 RCMGi0012-A showed a normal diploid 46,XX karyotype, without any detectable abnormalities (Fig. 1G). Short tandem repeat (STR) analysis confirmed the origin of the cell line RCMGi012-A from the fibroblasts of the indicated patient. Sendai virus genome and transgenes elimination was confirmed on passage 15 according to the manufacturer' protocol for CytoTuneTMiPS 2.0 Sendai Reprogramming Kit (Invitrogen) using the provided primers (listed in Table 2). Mycoplasma testing was carried out using MycoReport kit (Evrogen) which is based on end-point PCR with amplification of species-specific regions of 16S rRNA genes and showed that this line at passage 15 were not infected by mycoplasma. Stable iPSC line was collected in Moscow Branch of the Biobank "All-Russian Collection of Biological Samples of Hereditary Diseases".

3. Materials and methods

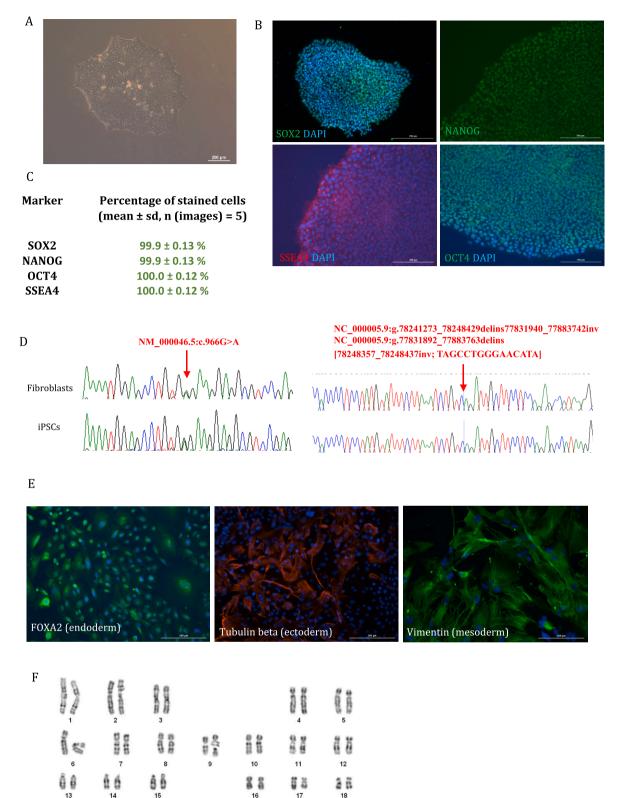
3.1. iPSCs generation and culturing

Fibroblasts culture was obtained from biopsy material by cultivation in Amniocar medium (PanEco). On second passage cells were transferred to fibroblast medium (DMEM high glucose, GlutaMAXTM and pyruvate (Life Technologies), 10% fetal bovine serum (FBS), 1% MEM non-essential amino acids solution (Gibco), 50 U/ml penicillin, 50 µg/ml streptomycin). On 1st day reprogramming of 100,000 cells/well was performed using mentioned kit, and on the 8th day the cells were reseeded into plates pre-coated with Matrigel (Corning). iPSC clones were picked from 14th day and cultured in TeSRTM-E8TM medium (E8) (Stemcell Technologies) at 37°C, 5% CO₂ with passaging every 4–7 days

Stem Cell Research 73 (2023) 103259

Table 1

Characterization and validation.


Classification	Test	Result	Data
Morphology	Photography Bright field	Normal	Fig. 1 panel A
Phenotype	Qualitative analysis (Immunocytochemisty)	Positive for pluripotency markers: SSEA- 4, NANOG, SOX2, OCT-4	Fig. 1 panel B
	Quantitative analysis (Immunocytochemisty counting)	100 % SSEA-4, 99.9 % NANOG, 99.9 % SOX2, 100 % OCT-4	Fig. 1 panel C
Genotype	Karyotype (G-banding) and resolution	46,XX Resolution: 1000	Fig. 1 panel F
Identity	Microsatellite PCR (mPCR)	Not performed	Not performed
	STR analysis	20 STR sites analyzed, 17 matching, 3 non- informative	Available with the authors
Mutation analysis (IF APPLICABLE)	Sanger sequencing	Heterozygous type of ARSB mutation c.966G>A Non-allelic homologous recombination between ARSB and LHFPL2	Fig. 1 panel D
Microbiology and virology	Southern Blot OR WGS Mycoplasma	N/A Testing by MycoReport (Evrogen) Negative	N/A Supplementary files Fig. 2
Differentiation potential	In vitro spontaneous differentiation: embryoid bodies formation and immunocytochemisty	Positive expression of differentiation markers: Endoderm: FOXA2 Ectoderm: Beta tubulin III Mesoderm: Vimentin	Fig. 1 panel E
Donor screening (OPTIONAL)	HIV 1 + 2 Hepatitis B, Hepatitis C	Not performed	Not performed
Genotype additional info (OPTIONAL)	Blood group genotyping HLA tissue typing	Not performed Not performed	Not performed Not performed

(split ratio 1:6) using Gentle Cell Dissociation Reagent (GCDR) and with 5 μ M Y27632 ROCK inhibitor (Stemcell Technologies) for 24 h.

3.2. Immunocytochemistry counting

Cells were fixed with 4% paraformaldehyde for 20 min, permeabilized with 0,25% Triton X-100 at RT for 10 min and blocked with 1% BSA in PBS at RT for 30 min. Antibodies were diluted in 1% BSA. Samples were incubated with primary and secondary antibodies at RT for 1 h, then nuclei were counterstained using DAPI (Abcam) at RT for 10 min. Fluorescent images were captures using Lionheart FX Automated Microscope (BioTek), processed and analyzed using CellProfiler 3.0.0. Cell cytoplasm and nuclei were determined, the average fluorescence intensity of staining per cell was measured and the percentage of positives cells in the green and red channels was counted.

8.8

10.11

Y

Table 2

	Antibodies used for immunocytochemistry			
	Antibody	Dilution	Company Cat #	RRID
Pluripotency Markers	SSEA4 Monoclonal Antibody (MC813-70), Mouse	1:100	Thermo Fisher Scientific, Cat # 41- 4000	RRID: AB 2533506
	Anti-Oct4 Antibody, Rabbit	1:100	Abcam, Cat # ab18976	RRID:AB_444714
	Nanog (D73G4) XP Antibody, Rabbit	1:200	Cell Signaling Technology, Cat# 4903	RRID: AB_10559205
	Sox2 (D6D9) XP Antibody, Rabbit	1:400	Cell Signaling Technology, Cat # 3579	RRID: AB 2195767
Differentiation Markers	Recombinant Anti-Vimentin Antibody [EPR3776], Rabbit	1:250	Abcam, Cat # Ab92547	RRID: AB_10562134
	Recombinant Anti-FOXA2 antibody [EPR446], Rabbit	1:200	Abcam, Cat # 108,396	RRID: AB 10863255
	Anti-beta III Tubulin antibody [2G10], Mouse	1:300	Abcam, Cat # ab131205	RRID: AB 2256751
Secondary antibodies	Donkey anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	1:150	Abcam, Cat #: A21206	RRID: AB 2535792
	Goat anti-Mouse IgG (H $+$ L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 594	1:150	Cat# A-11032,	RRID: AB_2534091

Primers

	Target	Size of band	Forward/Reverse primer (5'-3')
Sanger sequencing	ARSB	693 bp	CTGGGCCTTACTTATGTCTG
	c.966G>A locus		TCAAAGACCTTCCATGGAGG
	Specific product of non-allelic homologous recombination between ARSB and	309 bp	GCACCCACTGTCCACAATCC
	LHFPL2		CGATTAGCATTGGTCTGAAGGTG
Sendai virus	SeV	181 bp	GGATCACTAGGTGATATCGAGC
elimination			ACCAGACAAGAGTTTAAGAGATATGTATC
	KOS	528 bp	ATGCACCGCTACGACGTGAGCGC
			ACCTTGACAATCCTGATGTGG
	Klf4	410 bp	TTCCTGCATGCCAGAGGAGCCC
			AATGTATCGAAGGTGCTCAA
	c-Myc	532 bp	TAACTGACTAGCAGGCTTGTCG
			TCCACATACAGTCCTGGATGATGATG

3.3. Mutation verification

Genomic DNA was isolated from fibroblasts and iPSCs using Quick-DNA Miniprep Kit (Zymo Research). *ARSB* locus with c.966G>A and specific product of non-allelic homologous recombination were PCRamplified (98°C 3'; 35x (95°C 5", 60°C 5", 72°C 30")) using HF-Fuzz DNA polymerase (Dialat) in Eppendorf Mastercycler (Eppendorf). Sanger sequencing of PCR products (95°C 3'; 25x (95°C 15", 50°C 15", 60°C 2')) was performed using ABI Prism 3130XL Genetic Analyzer (Applied Biosystems).

3.4. Karyotyping

iPSCs were cultured as described until reaching 70–80% confluency. 10 μ g/ml colchicine solution (PanEco) was added to cells for 40 min to arrest mitosis. Then cells were treated by hypotonic solution (0.075M KCl) at 37C for 13 min and fixed by twice incubation (30 and 20 min) in cooled solution made of 3 parts methanol and 1 part glacial acetic acid. The chromosome spread was analyzed under the Axio Imager 2 microscope (ZEISS).

3.5. Spontaneous differentiation

On the 13th passage, the iPSCs were detached using GCDR and transferred in E8 with Y27632 to ultra-low attachment plate (Corning). On day 3 the half of medium was replaced and on the day 6 all the medium was replaced with EB medium consisting of Advanced DMEM/ F12 (Gibco), 20% KO Serum replacement (Gibco), 1% MEM NEAA, 2 mM L-glutamine (Gibco), 50 U/ml penicillin, 50 µg/ml streptomycin. Thereafter, the medium was replaced every 2 days with an addition of 1% FBS and then stepwise increase it from 1 to 10%. In about 2 weeks EB

were transferred onto gelatin-coated plates in EB medium with 10% FBS. After 7–14 days the expression of markers was analyzed using immunocytochemistry.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by The Ministry of Science and Higher Education of the Russian Federation (the Federal Scientific-technical program for genetic technologies development for 2019-2027, agreement N° 075-15-2021-1061, RF 193021X0029).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2023.103259.

References

- Bychkov, I., Filatova, A., Baydakova, G., et al., 2022. Non-allelic homologous recombination leading to premature transcription termination in the ARSB gene as a novel cause of Mucopolysaccharidosis type VI. Authorea. https://doi.org/10.22541/ au.165639968.80514021/v1.
- Harmatz, P., Shediac, R., 2017. Mucopolysaccharidosis VI: pathophysiology, diagnosis and treatment. Front. Biosci. (landmark Ed) 22 (3), 385–406. https://doi.org/ 10.2741/4490.